Polynomdivision | Mathebibel (2024)

Über 80 € Preisvorteil gegenüber Einzelkauf!

Mathe-eBooks im Sparpaket

Von Schülern, Studenten, Eltern und
Lehrern mit 4,86/5 Sternen bewertet.
47 PDF-Dateien mit über 5000Seiten
inkl. 1Jahr Updates für nur 29,99€.
Ab dem 2.Jahr nur 14,99€/Jahr.
Kündigung jederzeit mit wenigen Klicks.

Jetzt Mathebibel herunterladen

Polynomdivision | Mathebibel (1)

In diesem Kapitel besprechen wir die Polynomdivision anhand eines ausführlichen Beispiels.

Inhaltsverzeichnis

Erforderliches Vorwissen

  • Was ist ein Polynom?
  • Was ist eine kubische Gleichung?
  • Schriftliche Division

Einordnung

Wir können Polynome addieren.

Beispiel 1

$$ \left(x^3 + 2x^2 - 3\right) + \left(3x^2 - 5 \right) = x^3 + 5x^2 - 8 $$

Wir können Polynome voneinander subtrahieren.

Beispiel 2

$$ \left(4x^5 + 3x^3 - 4x + 3\right) - \left(3x^3 - 2x + 2 \right) = 4x^5 - 2x + 1 $$

Wir können Polynome miteinander multiplizieren.

Beispiel 3

$$ \left(x^3 + 2x^2\right) \cdot \left(3x^2 - 5 \right) = 3x^5 + 6x^4 -5x^3 -10x^2 $$

…und deshalb ist es nur logisch, dass wir auch Polynome dividieren können.

Beispiel

Beispiel 4

Berechne

$$ \begin{align*} &\quad (2x^3 + 4x^2 - 2x - 4) : (x - 1) = \; ? \end{align*} $$

mithilfe einer Polynomdivision.

$\boldsymbol{x}^3$-Term

Division

$$ \begin{align*} &\quad ({\colorbox{yellow}{$2x^3$}} + 4x^2 - 2x - 4) : ({\colorbox{yellow}{$x$}}-1) = {\colorbox{yellow}{$2x^2$}} \end{align*} $$

Beschreibung

Wie oft passt $x$ in $2x^3$?

$$ \frac{2x^3}{x} = 2x^2 $$

Multiplikation

$$ \begin{align*} &\quad (2x^3 + 4x^2 - 2x - 4) : {\colorbox{yellow}{$(x-1)$}} = {\colorbox{yellow}{$2x^2$}} \\[5px] &-({\colorbox{yellow}{$2x^3 - 2x^2$}}) \end{align*} $$

Beschreibung

Wir multiplizieren $2x^2$ mit $(x-1)$.

$$ 2x^2 \cdot (x - 1) = 2x^3 - 2x^2 $$

Das Ergebnis schreiben wir mit einem negativen Vorzeichen in die 2.Zeile.

Subtraktion

$$ \begin{align*} &\quad ({\colorbox{yellow}{$2x^3 + 4x^2 - 2x - 4$}}) : (x-1)= 2x^2 \\[5px] &{\colorbox{yellow}{$-(2x^3 - 2x^2)$}} \\ &\qquad \qquad {\colorbox{yellow}{$6x^2- 2x - 4$}} \end{align*} $$

Beschreibung

Das Ergebnis der vorherigen Multiplikation ziehen wir von der ursprünglichen Gleichung ab.

$$ 2x^3 + 4x^2 - 2x - 4 - (2x^3 - 2x^2) = 2x^3 + 4x^2 - 2x - 4 - 2x^3 + 2x^2 = 6x^2 - 2x - 4 $$

Das Ergebnis schreiben wir in die 3.Zeile.

$\boldsymbol{x}^2$-Term

Division

$$ \begin{align*} &\quad (2x^3 + 4x^2 - 2x - 4) : ({\colorbox{yellow}{$x$}}-1) = 2x^2 + {\colorbox{yellow}{$6x$}} \\[5px] &-(2x^3 - 2x^2) \\ &\qquad \qquad {\colorbox{yellow}{$6x^2$}}- 2x - 4 \end{align*} $$

Beschreibung

Wie oft passt $x$ in $6x^2$?

$$ \frac{6x^2}{x} = 6x $$

Multiplikation

$$ \begin{align*} &\quad (2x^3 + 4x^2 - 2x - 4) : {\colorbox{yellow}{$(x-1)$}} = 2x^2 + {\colorbox{yellow}{$6x$}} \\[5px] &-(2x^3 - 2x^2) \\ &\qquad \qquad 6x^2 - 2x - 4 \\[5px] &\qquad -({\colorbox{yellow}{$6x^2-6x$}}) \end{align*} $$

Beschreibung

Wir multiplizieren $6x$ mit $(x-1)$.

$$ 6x \cdot (x - 1) = 6x^2 - 6x $$

Das Ergebnis schreiben wir mit einem negativen Vorzeichen in die 4.Zeile.

Subtraktion

$$ \begin{align*} &\quad (2x^3 + 4x^2 - 2x - 4) : (x - 1) = 2x^2 + 6x \\[5px] &-(2x^3 - 2x^2) \\ &\qquad \qquad {\colorbox{yellow}{$6x^2 - 2x - 4$}} \\[5px] &\qquad {\colorbox{yellow}{$-(6x^2-6x)$}} \\[5px] &\qquad \qquad \qquad {\colorbox{yellow}{$4x - 4$}} \end{align*} $$

Beschreibung

Das Ergebnis der vorherigen Multiplikation ziehen wir vom Restterm ab.

$$ 6x^2 - 2x - 4 - (6x^2 - 6x) = 6x^2 - 2x - 4 - 6x^2 + 6x = 4x - 4 $$

Das Ergebnis schreiben wir in die 5.Zeile.

$\boldsymbol{x}$-Term

Division

$$ \begin{align*} &\quad (2x^3 + 4x^2 - 2x - 4) : ({\colorbox{yellow}{$x$}}-1) = 2x^2 + 6x + {\colorbox{yellow}{$4$}} \\[5px] &-(2x^3 - 2x^2) \\ &\qquad \qquad 6x^2 - 2x - 4 \\[5px] &\qquad -(6x^2-6x) \\[5px] &\qquad \qquad \qquad {\colorbox{yellow}{$4x$}} - 4 \end{align*} $$

Beschreibung

Wie oft passt $x$ in $4x$?

$$ \frac{4x}{x} = 4 $$

Multiplikation

$$ \begin{align*} &\quad (2x^3 + 4x^2 - 2x - 4) : {\colorbox{yellow}{$(x-1)$}} = 2x^2 + 6x + {\colorbox{yellow}{$4$}} \\[5px] &-(2x^3 - 2x^2) \\ &\qquad \qquad 6x^2 - 2x - 4 \\[5px] &\qquad -(6x^2-6x) \\[5px] &\qquad \qquad \qquad 4x - 4 \\[5px] &\qquad \qquad \quad -({\colorbox{yellow}{$4x-4$}}) \end{align*} $$

Beschreibung

Wir multiplizieren $4$ mit $(x-1)$.

$$ 4 \cdot (x - 1) = 4x - 4 $$

Das Ergebnis schreiben wir mit einem negativen Vorzeichen in die 6.Zeile.

Subtraktion

$$ \begin{align*} &\quad (2x^3 + 4x^2 - 2x - 4) : (x - 1) = 2x^2 + 6x + 4 \\[5px] &-(2x^3 - 2x^2) \\ &\qquad \qquad 6x^2 - 2x - 4 \\[5px] &\qquad -(6x^2-6x) \\[5px] &\qquad \qquad \qquad {\colorbox{yellow}{$4x - 4$}} \\[5px] &\qquad \qquad \quad {\colorbox{yellow}{$-(4x-4)$}} \\[5px] &\qquad \qquad \qquad \qquad \quad {\colorbox{yellow}{$0$}} \end{align*} $$

Beschreibung

Das Ergebnis der vorherigen Multiplikation ziehen wir vom Restterm ab.

$$ 4x - 4 - (4x - 4) = 4x - 4 - 4x + 4 = 0 $$

Das Ergebnis schreiben wir in die 7.Zeile.

Da kein Rest übrig geblieben ist, ist die Polynomdivision beendet.

Falls wir richtig gerechnet haben, gilt:

$$ \left(2x^2 + 6x + 4\right) \cdot (x-1) = 2x^3 + 4x^2 - 2x - 4 $$

Anwendungen

Die Polynomdivision ist häufig dann gefragt, wenn es darum geht, Terme zu vereinfachen. So haben wir im obigen Beispiel einen kubischen Term ($2x^3 + 4x^2 - 2x - 4$) zu einem quadratischen Term ($2x^2 + 6x + 4$) reduziert – ein wesentlicher Schritt beim Lösen von kubischen Gleichungen.

Online-Rechner

Kubische Gleichungen online berechnen

Polynomdivision | Mathebibel (2024)

FAQs

How to divide polynomials on a calculator? ›

Input the polynomial to be divided in the dividend field of the calculator. Input the polynomial that is dividing the dividend in the divisor field of the calculator. Click on the "calculate" or "divide" button to perform the long division. The calculator will output the quotient and remainder of the division.

What to do with the remainder when dividing polynomials? ›

It says that if you divide a polynomial, f(x), by a linear expression, x-A, the remainder will be the same as f(A). For example, the remainder when x^2 - 4x + 2 is divided by x-3 is (3)^2 - 4(3) + 2 or -1.

What is the algorithm for polynomial division? ›

The division algorithm formula is: Dividend = (Divisor × Quotient) + Remainder. This can also be written as: p(x) = q(x) × g(x) + r(x), where, p(x) is the dividend. q(x) is the quotient.

How to simplify polynomials? ›

Correct answer:

To simplify a polynomial, we have to do two things: 1) combine like terms, and 2) rearrange the terms so that they're written in descending order of exponent.

What is the rule for division polynomials? ›

Polynomial long division is similar to long division of numbers. When we divide, the polynomials' terms should be arranged in decreasing order of exponents, from the highest exponent to the lowest exponent. For example, if we have x 2 + x 4 + 1 , it should be rearranged as x 4 + x 2 + 1 .

Do you subtract when dividing polynomials? ›

Step 1: To determine the first term of the quotient, divide the leading term of the dividend by the leading term of the divisor. Step 2: Multiply the first term of the quotient by the divisor, remembering to distribute, and line up like terms with the dividend. Step 3: Subtract the resulting quantity from the dividend.

How do you solve a polynomial using the remainder theorem? ›

The remainder theorem says "when a polynomial p(x) is divided by a linear polynomial whose zero is x = k, the remainder is given by p(k)". The basic formula to check the division is: Dividend = (Divisor × Quotient) + Remainder. The remainder theorem does not work when the divisor is not linear.

How to find the remainder of a polynomial without dividing? ›

Another way to find the remainder is to set the x - a to term equal to 0 and then solve for x. After this, you just plug it back in to find the remainder.

What is the shortcut for dividing polynomials? ›

Synthetic division is a shortcut for polynomial division when the divisor is of the form x – a. Only numeric coefficients of the dividend are used when dividing with synthetic division. Divide (2 x – 11 + 3 x 3) by ( x – 3).

Why do we divide polynomials? ›

The purpose of the division of polynomials is to find the quotient of two polynomials. To divide two polynomials, we could just multiply them and divide them by the highest power in each term.

What is the factor of a polynomial division? ›

The Division Algorithm for Polynomials

The polynomial p is called the dividend; d is the divisor; q is the quotient; r is the remainder. If r(x)=0 then d is called a factor of p. Because of the division, the remainder will either be zero, or a polynomial of lower degree than d(x).

How do you simplify and divide polynomials? ›

Solution: Break up the fraction by dividing each term in the numerator by the monomial in the denominator and then simplify each term. Check your division by multiplying the answer, the quotient, by the monomial in the denominator, the divisor, to see if you obtain the original numerator, the dividend.

How do you divide polynomials with different variables? ›

Dividing polynomials with two variables is very similar to regular long division. We go through each term of the polynomial determining what goes into it and subtracting that term from the original polynomial. When there are no terms left in the original polynomial the division is complete.

References

Top Articles
Latest Posts
Article information

Author: Lilliana Bartoletti

Last Updated:

Views: 6451

Rating: 4.2 / 5 (53 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Lilliana Bartoletti

Birthday: 1999-11-18

Address: 58866 Tricia Spurs, North Melvinberg, HI 91346-3774

Phone: +50616620367928

Job: Real-Estate Liaison

Hobby: Graffiti, Astronomy, Handball, Magic, Origami, Fashion, Foreign language learning

Introduction: My name is Lilliana Bartoletti, I am a adventurous, pleasant, shiny, beautiful, handsome, zealous, tasty person who loves writing and wants to share my knowledge and understanding with you.